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Experimental results on flow-field statistics are presented for turbulent oscillatory 
flow in a circular pipe for the range of Reynolds numbers Re’ = U,S/v (U,, = 
amplitude of cross-sectional mean velocity, 6 = (2v /w) i )  = Stokes layer thickness) 
from 550 to 2000 and Stokes parameters A = R/S (R = radius of the pipe) from 5 to 
10. Axial and radial velocity components were measured simultaneously using a two- 
colour laser-Doppler anemometer, providing information on ensemble-averaged 
velocity profiles as well as various turbulence statistics for different phases during the 
cycle. In all flows studied, turbulence appeared explosively towards the end of the 
acceleration phase of the cycle and was sustained throughout the deceleration phase. 
During the turbulent portion of the cycle, production of turbulence was restricted to 
the wall region of the pipe and was the result of turbulent bursts. The statistics of 
the resulting turbulent flow showed a great deal of similarity to results for steady 
turbulent pipe flows ; in particular the three-layer description of the flow consisting 
of a viscous sublayer, a logarithmic layer (with von Karman constant = 0.4) and an 
outer wake could be identified at  each phase if the corresponding ensemble-averaged 
wall-friction velocities were used for normalization. Consideration of similarity laws 
for these flows reveals that the existence of a logarithmic layer is a dimensional 
necessity whenever at least two of the scales R, u * / w  and v/u* are widely separated ; 
with the exact structure of the flow being dependent upon the parameters uJRw and 
uZ,/wv. During the initial part of the acceleration phase, production of turbulence as 
well as turbulent Reynolds stresses were reduced to very low levels and the velocity 
profiles were in agreement with laminar theory. Nevertheless, the fluctuations 
retained a small but finite energy. In Part 2 of this paper, the major features 
observed in these experiments are used as a guideline, in conjunction with direct 
numerical simulations of the ‘perturbed ’ Navier-Stokes equations for oscillatory 
flow in a channel, to identify the nature of the instability that is most likely to be 
responsible for transition in this class of flows. 

1. Introduction 
Oscillatory wall-bounded flows emerge in a variety of engineering applications in 

fields ranging from offshore engineering to biomedical sciences. An understanding of 
the dynamics and mechanisms of transition to turbulence in these flows is, therefore, 
of great practical interest. Many new and interesting questions arise, concerning not 
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only the laminar-turbulent transition process but also regarding the effects of the 
imposed oscillations on the bursting events and turbulence production mechanisms 
in these wall flows. Nevertheless, relatively few studies have been reported in the 
literature on the subject. 

In this study we restrict our discussion to oscillatory flows with zero time mean. 
For studies on periodic turbulent flows with non-zero time mean the reader is 
referred to the works of Mizushina, Maruyama & Shiozaki (1973), Mizushina, 
Maruyama & Hirasawa (1975). Ramaprian & Tu (1983), Tu & Ramaprian (1983) 
and Tardu, Binder & Blackwelder (1987). 

Many of the earlier studies on oscillatory flows with zero time mean (Sergeev 1966; 
Merkli & Thomann 1976; Hino, Sawamoto & Takasu 1976; Ohmi et al. 1982), were 
directed towards defining the boundaries between the laminar and turbulent flow 
regimes. Four broad types of flows in the (Res-A) space have been identified: (I) 
laminar flow ; (11) disturbed laminar flow, where ‘ small-amplitude ’ perturbations 
appear superimposed on the velocity traces during the acceleration phase of the cycle 
but where otherwise the velocity traces agree with laminar theory; (111) 
intermittently turbulent flow, where turbulent bursts appear violently and 
explosively during the deceleration phase of the cycle while during the acceleration 
phase the flow reverts to laminar ; and possibly (IV) fully turbulent flow, where the 
flow remains turbulent throughout the cycle. Flows of type (IV) have not actually 
been observed by any of the investigators, although i t  has been observed that, as Res 
increases, flows of type (111) remain turbulent for increasingly larger portions of the 
cycle. 

It is generally agreed that transition to flows of type (111) is a local event and is 
governed by the Reynolds number based on the Stokes boundary-layer thickness, as 
long as the boundary-layer thickness is small compared to the physical dimensions 
of the problem. For flows of liquids in pipes and channels with A > 2, a transitional 
Res (independent of A )  in the range of 500-550 has been reported by a number of 
investigators (Sergeev 1966; Hino et al. 1976; Ohmi et al. 1982). A similar value of 
Re:,, - 565 has also been reported by Li (1954) for transition in flow about an 
oscillating plate in an infinite medium. There have, however, been other reports 
specifying different values for the transitional Reynolds number. For example, 
Merkli & Thomann (1975) observed transition at Re&, - 280 for flow in a pipe with 
air as the working fluid. In  giving this value, Merkli & Thomann do not specify 
whether transition to flows of type (11) or of type (111) was intended. This lower value 
of Re:,,, is in good agreement with the results of Ohmi et al. for transition to flows of 
type (11), and falls within the range of Res for which Hino et al. (1976) observed 
transition to flows of type (11). It differs from the results reported by Hino and 
coworkers in that in Hino’s experiments the critical Res for transition to flows of type 
(11) was dependent on A .  In general, transition to flows of type (11) seems to be quite 
sensitive to the particular experimental set-up, whereas transition to flows of type 
(111) is very well defined and rather independent of the particular experimental 
set -up. 

A theoretical explanation of the instability mechanism leading to transition to 
flows of either type (11) or type (111) has so far been unavailable, the major problem 
being the lack of a critical Reynolds number based on linear theories from which 
nonlinear theories could be developed. It is generally agreed that transition is due to 
the local instability of the Stokes boundary layers near the walls, and therefore much 
of the existing theoretical work addresses the stability of the basic Stokes layer. 
Theoretical work has so far been restricted to the study of infinitesimal disturbances 
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for which the equations of motion can be linearized. Two classes of linear theories 
have been suggested ; ones based on the assumption of quasi-steadiness, and those 
which take into account the time variation of the base flow but which can only 
predict the behaviour of the disturbances in the periodic steady state. 

In quasi-steady theories (Collins 1963 ; Obremski & Morkovin 1969 ; Cowley 1987 ; 
Monkewitz & Bunster 1987)’ the time variation of the base velocity profile is 
neglected in the stability analysis and a series of ‘frozen’ profiles for different phases 
during the cycle are individually examined for stability. This approach is justified 
because the (convective) timescale for the growth or decay of the (inflexional) 
instabilities of the Stokes layer is much shorter than the (viscous) time variation of 
the base flow. Since a variety of base velocity profiles exist throughout a cycle, one 
would expect that during certain portions of the cycle the flow may be less stable 
than during others. This may seem encouraging in view of experimental observation 
of intermittently turbulent flows, until one realizes that a stability analysis of this 
kind predicts the most dangerous profiles to occur at  the start of the acceleration 
phase of the cycle, in direct conflict with experimental observations which show that 
turbulent bursts appear violently with the start of the deceleration phase. This type 
of instability, however, may explain transition to flows of type (11) as will be 
discussed in more detail in Part 2 of this paper (Akhavan, Kamm & Shapiro 1991). 

In time-dependent solutions (von Kerczek & Davis 1974; Hall 1978)’ an extension 
of the Floquet Theorem is used to provide a description of the behaviour of the 
disturbances in the periodic steady state. Using this approach von Kerczek & Davis 
(1974) studied the stability of a ‘finite’ Stokes layer (consisting of an oscillatory plate 
with a second stationary plate located a distance of A8 away) but found the flow to 
be stable for all the Reynolds numbers and disturbance wavenumbers, a, considered 
(0 c Res < 800, A = 8, 0.3 < a < 1.3). Furthermore, they found no evidence of 
transient growth of disturbances during a portion of the cycle such that the 
disturbances may grow to finite amplitudes within one cycle. Hall (1978) presented 
a different version of this theory in which there was no need for an upper boundary, 
but he too found that the flow was stable for all Reynolds numbers considered. In the 
case of the infinite Stokes layer, the least stable eigenmodes were associated with a 
continuous spectrum of eigenvalues located outside the layer. Since the ‘finite ’ layer 
only has a discrete spectrum of eigenvalues, Hall warns us against inferring the 
behaviour of the infinite layer from ‘finite’ models. So far no convincing explanation 
has been given of how these time-dependent calculations relate to quasi-steady 
theories. 

In the present work we wish to bridge some of the gap between theory and 
experiment by attempting to identify an instability mechanism that would result in 
flow-field statistics similar to those that have been observed experimentally. The 
problem is approached in two directions. On the one hand, experimental results are 
provided on the major features of transitional and turbulent oscillatory flows such 
as the transitional Reynolds number, timescales of the instability and various flow- 
field statistics. On the other hand, direct numerical simulations of the NavierStokes 
equations using spectral techniques are used to follow the evolution of the flow once 
it has been subjected to various classes of infinitesimal or finite-amplitude, two- or 
three-dimensional disturbances. The class of disturbances that is most successful in 
predicting features in agreement with experiments is identified. 

An earlier experimental study of turbulence statistics in purely oscillatory channel 
flows has been reported by Hino et al. (1983) for the case Res = 876, A = 12.8. The 
present studies generally confirm those results and extend them to a broader range 
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Measuring l- 

FIGURE 1. Schematic of the apparatus. 

of the Res-A space. Moreover, we present certain features that are more pronounced 
in the present experiments and which were not elaborated by Hino et ul. 

2. Experimental apparatus and data analysis 
Experiments were conducted in a quartz circular pipe, 2 em in inner diameter and 

8 m  long (figure 1) .  The length of the pipe was chosen such that under all flow 
conditions the pipe length was at  least three times the stroke length of the flow; 
thereby ensuring that the flow in the middle portion of the pipe was not suffering 
from any end effects. The pipe was connected through bell-shaped transitions to  a 
piston-cylinder at one end, and a wide-area head tank a t  the other. 

An electrohydraulic servovalve (MOOG model 76-102) with feedback control on 
the velocity and input command from a function generator was used to drive the 
piston. The quality of the sinusoidal motion generated by this mechanism was 
checked by monitoring the motion of the piston with a velocity transducer (LVDT, 
Schaevitz model 6L3-VTZ) and also by computing the flow rates based on laser- 
Doppler anemometer (LDA) measurements of velocity profiles. In each case a fast 
Fourier transform (FFT) fit was performed to  check the purity of the sinusoidal 
motion. Except for a small ‘glitch’ that occurred a t  flow reversal, the resulting 
motions could be fitted closely with a pure sine wave. 

Velocities were measured with a DISA two-colour LDA, in which the blue 
(488 nm) and green (514 nm) lines of an Argon laser (Lexel) were used to measure 
simultaneously the axial and radial velocity components. The LDA was equipped 
with a Bragg cell and was operated in the backscatter mode. Counters were used for 
signal processing. The probe volume had dimensions of 20 x 20 x 100 pm and fringes 
were 2 pm apart. The front lens in the LDA system was mounted on a two-axis linear 
translation stage with micrometer control of position to within 0.0001 in. This 
traversing mechanism was used to position the probe volume at selected points along 
a diameter within the quartz pipe. 

The optical distortion due to the curvature of the surfaces of the quartz pipe was 
eliminated by using, for the working fluid, an aqueous solution of ammonium 
thiocyanate with the same index of refraction as that of quartz (nd = 1.458). The 
solution was mixed until the correct index of refraction was achieved (approximately 
equal weights of ammonium thiocyanate salt and distilled water). A hand-held 
refractometer (Extech, model K502192) with G90% sucrose range (nd = 
1.333-1,512) and 2 YO accuracy was used to measure the index of refraction of the 
solution. Otherwise, the solution was Newtonian and had properties very similar to 
those of water (p = 1.1 g/cm3, v = 1.32 cS). Optical distortion due to the curvature 
of the outer surface of the pipe was also eliminated in a similar manner by immersing 
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the pipe, at the measurement site, in a rectangular chamber with flat quartz windows 
that was filled with the same index-matched fluid. 

A variety of seeding particles including alumina, latex, silicon carbide and 
titanium dioxide were examincd. Titanium dioxide (with particles of diameter from 
0.5 to  1 pm) was chosen over the others because of its good signal-to-noise ratio in 
the backscatter mode and ability to follow the smaller scales of turbulent motion. 

The Doppler information was recorded on a MINC PDPl l /23  data acquisition 
computer. The LDA counters could communicate with this computer via a direct 
memory access parallel interface board (DRV11-J), and were wired to interrupt the 
computer every time a Doppler burst was verified by both counters (within 15 p of 
each other). Because the base flow was time dependent, the time of arrival of each 
Doppler burst in relation to the periodic motion of the flow had to  be determined. 
This was achieved by making use of the computer's internal clock. This clock was 
reset a t  the beginning of each cycle (at a point corresponding to zero positive-going 
flow rate into the system) and was programmed to count the time in fractions of 
1/240th of the period of oscillation. Upon arrival of each Doppler burst, the register 
containing this time was read and the time information was stored together with the 
Doppler data. In  addition, the instantaneous pressure drop through the quartz pipe 
(measured with a Microswitch pressure transducer) and the velocity of the driving 
piston (as measured by the LVDT velocity transducer) were sampled through the 
computer's A/D converters a t  a rate of 240 times per cycle and the information was 
stored and later transferred to a VAX 11/750 minicomputer for further processing. 

Typically, on the order of 2000 Doppler bursts per second were processed in this 
manner. The rate-limiting factor was the amount of seeding that could be used before 
the flow became opaque. Sampling was continued until at least 100 data points had 
been recorded for each of the 240 fractions of the cycle. 

3. Experimental results 
3.1. Laminar flow regime 

To check the reliability of our experimental methods, the velocity profiles for an 
example of laminar flow with an imposed flow rate Q = &,, sin ot (Re' = 233, A = 3.6) 
were measured and compared to the theoretical solutions of Womersley (1955) and 
Uchida (1956). The results are shown in figures 2 and 3. Figure 2 is a plot of the phase 
variation of the axial velocity at various radial locations. The solid lines represent the 
theory. At each radial location the axial velocity changes sinusoidally with time. The 
points near the wall have a phase lead with respect to the core. Both of these features 
are captured accurately in the experiments. I n  figure 3, the experimental velocity 
profiles a t  selected phases during the cycle are compared to theory. The agreement 
between theory and experiment is in general very good. 

3.2. Turbulent flow regime 
In  the turbulent flow regime we have made detailed measurements for three different 
flow conditions; A = 10.6 with Res = 1080 and 1720; and A = 5.7 with Res = 957. All 
these flows are of type (111). The characteristics of the resulting turbulent flow will 
first be discussed in detail for the flow condition corresponding to A = 10.6, Re' = 
1080. Most of the features demonstrated by this flow are common to all the cases 
studied and as such this data point may be considered as a prototype flow. The effect 
of variation of Re' and A will then be discussed. 



400 R. Akhavan, R. D. Kamm and A .  H .  Shapiro 

Accel. Decel. Accel. Decel. 
‘r = 0 0.2 , I I 

I I I I I 
I 2n 0 zx 

W f  

FIQURE 2. Phase variation of axial velocity in the laminar flow regime from experiments 
(symbols) compared to laminar theory (solid lines). (Rd = 233, A = 3.6.) 

3.2.1. Mean velocity distributions 
Ensemble-averaged velocities are defined as 

r N  
1 -. a(?-, w t )  = - c U,(T, wt + 2x(j-  l)),  

N*=, 

where N is typically 100 and phase of the cycle is resolved to 11240th of the period 
of oscillation. 

The temporal variation of the ensemble-averaged axial velocity a t  various radial 
locations is plotted in figure 4 for turbulent flow at A = 10.6, Reb = 1080. The solid 
lines represent the laminar solutions under the same flow rate and are plotted for 
reference. 

During the turbulent portion of the cycle (5x112 < wt < IT,  17x112 < wt <  IT), as 
a result of turbulent bursts, there is significant momentum exchange between the 
low-speed fluid near the wall and the high-speed fluid nearer the centre of the pipe. 
This momentum exchange is rather dramatically seen in figure 4 as a hump during 
the deceleration phase for 0.9 c r / R  < 1.0 (0.0 < y < 6; y = distance from the wall) 
and a simultaneous dip for 0.6 < r/R < 0.9 (6 < y < 48). Outside this active layer, in 
the region 0 < r/R c 0.6 (46 < y < R)  is an inviscid outer ‘core’, where the velocity 
varies in phase with the imposed flow in a nearly sinusoidal manner. The hump a t  the 
beginning of the deceleration phase near the centre of the pipe (0 < r/R < 0.3) is due 
to a turbulent ‘wake ’ at the centre of the pipe, as will be discussed shortly. 

From these data one can construct, as in figure 5, profiles of ensemble-averaged 
axial velocity for different phases during the cycle. I n  this figure the solid lines drawn 
through the data points are best fits to the data calculated by a binomial smoothing 
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FIGURE 3. Comparison between experimental velocity profiles in the laminar flow regime 
(Red = 233, A = 3.6) and laminar theory. 

algorithm (Marchand & Marmet 1983), while the ‘bare ’ solid lines represent the 
laminar solution under the same flow rate. These profiles reveal a marked difference 
between the structure of the flow during the acceleration phase as compared to the 
deceleration phase. 

During the acceleration phase of the cycle (0 < o t  < in, R < wt < $), the wall shear 
stresses (slopes of the velocity profiles a t  the wall) agree well with laminar theory. 
Nevertheless, during this phase, the ensemble-averaged velocity profiles depart 
dramatically from the solutions of Womerseley (1955) and Uchida (1956) outside the 
wall region. The solutions of Womersely and Uchida, of course, refer to laminar flow 
in the ‘periodic steady state’ and are characterized by large phase differences 
between the motion of the boundary layers and the core. In  the present problem, 
however, laminar flow during the acceleration phase is followed by turbulent flow 
during the deceleration phase. Large Reynolds stresses during the deceleration phase 
transfer momentum radially so efficiently that any phase differences between the 
motion of the boundary and the core are eliminated. At the end of the deceleration 
phase, when the integrated flow is zero, the velocity profile is also virtually uniform 
(and zero) across the cross-section. The laminar flow in the acceleration phase that 
follows then behaves not according to the solutions of Womersley and Uchida, but 
as in the problem of start-up from rest of sinusoidal laminar flow in a pipe. We have 
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FIGURE 4. Phase variation of the ensemble-averaged axial velocity in the turbulent flow regime 
(symbols) compared to laminar theory. (Re6 = 1080, A = 10.6.) 
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FIGURE 5. Ensemble-averaged axial velocity profiles in the turbulent flow regime (-O-) 
compared to laminar profiles. (Re6 = 1080, A = 10.6.) 
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FIQURE 6. Velocity profiles for start-up from rest of laminar flow in a channel (- x -) 

compared to Womersley’s solution ( A  = 10). 

numerically integrated the NavierStokes equations to find these profiles, with the 
results shown in figure 6. The results agree well with the measured data during the 
early part of the acceleration phase. 

In  contrast, the profiles during the deceleration phase exhibit boundary layers 
that are considerably thinner than those for laminar flow. The detailed structure of 
the flow during this period is best seen in semi-logarithmic plots of velocity as a 
function of the distance from the wall and will be discussed shortly. For now note the 
characteristic concavity of these profiles in the region just outside the wall layer at 
y/R - 0.2, which is characteristic of turbulent boundary layers in adverse pressure 
gradients. Note also that the profiles at the end of the deceleration phase (wt = x or 
2n), a t  zero flow rate, show practically no phase differences between the motion of the 
boundary layer arid the core. As mentioned earlier, this is due to efficient momentum 
exchange by turbulent Reynolds stresses. 

3.2.2. Wall-friction velocity 
The wall-friction velocity, u* = (T,/p)i is a measure of the wall shear stress 7,. I n  

fully developed pipe flow, the ensemble-averaged pressure gradient, afilax, is 
independent of the axial and radial directions and the overall momentum balance in 
the axial direction may be written as 

GaV(wt) = - a(r ,  wt) r d r  = U, sin wt. 
where ;2[ 

Ensemble-averaged values of ui((wt) were calculated from (2), using experimental 
measurements of ap/az made with a differehtial pressure transducer and aa,,(wt) 
calculated from LDA measurements of velocity. Figure 7 shows u; (b t )  as so 
determined for the case Res = 1080, A = 10.6. Values of T , / P  are positive for 0 < 
wt < R ,  and negative for n < wt < 2 ~ .  This change in sign is merely a reflection of the 
reversal of the direction of flow for R < wt < 2 ~ .  
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FIGURE 7. Phase variation of the wall-frict&n velocity calculated by various methods : -, 
expression (2); 000, -vau/ar(,_,; . . . * ., u'v' at y / R  = 0.1 ; -0-, laminar theory or quaai- 
steady turbulence correlation. 

Two checks can be applied to  these measurements: (i) Throughout the cycle, the 
value of ui should agree with the quantity - v a f ~ / a r l ~ - ~ .  This quantity can readily 
be calculated from the LDA measurements of velocity and is also shown in figure 7 .  
(ii) As will be discussed in more detail in $3.2.5,  for the turbulent portion of the cycle, 
a constant stress layer exists near the wall ( y / R  << 1). In the outer portion of this 
region (i.e. for y+ 7 y u , / v  % 1) the contribution of the viscous stresses to the overall 
local stress is small and the relation a / u i  x 1 holds. The Reynolds stress for 
y / R  = 0.1 (y+ x 35-70)  is also plotted in figure 7 ,  and is seen to  be in close 
agreement with ui in the turbulent portion of the cycle. 

Also shown in figure 7 ,  are two calculated curves of ~ , / p .  The curves shown during 
the acceleration phase represent T,/p according to the solution of Uchida (1956) for 
laminar oscillatory flow in a pipe. For the deceleration phase, the displayed curves 
represent ~ , / p  calculated from the Blasius correlation 

-0.25 
-- 7w - 0.03325u&(wt) 
P 

which applies to steady turbulent flows in smooth pipes. As can be see in figure 7 ,  
This correlation agrees surprisingly well with the measurements of r W / p ,  indicating 
that at least for flows in the range of parameters of this study (u , /wR - 1 )  quasi- 
steady correlations can be used to  predict the wall-friction velocities during the 
turbulent portion of the cycle. 

3.2.3. Logarithmic plots of ensemble-averaged velocity distributions 

Semi-logarithmic plots of ensemble-averaged velocity distributions, non-dim- 
ensionalized with respect to the corresponding wall-shear velocities, are displayed in 
figure 8 as a function of the wall coordinates y+ = yu* /v  for the case Res = 1080, 
A = 10.6. These plots indicate that the velocity profile during the deceleration phase of 
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FIGURE 8 (a, b ) .  Semi-logarithmic plots of ensemble-averaged axial velocity in the turbulent 
flow regime. (Re" = 1080, A = 10.6.) 
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the cycle is composed of a viscous sublayer, a logarithmic laycr and an outer wake 
as for ‘steady ’ turbulent wall-bounded flows. This behaviour is predicted by 
similarity arguments which show that the existence of a logarithmic layer is a 
dimensional necessity whenever a t  least two of the lengthscales R,  uJw and v/u* are 
widely separated, with the detailed structure of the flow being dependent upon the 
parameters uJRw and ui/wv. 

To proceed with these similarity arguments, note that the dynamics of the flow a t  
each phase during the turbulent portion of the cycle is governed by the parameters 
p, p, M, w and u,(wt). Three independent lengthscales can be formed from the 
indicated list of dimensional parameters; namely, a viscous lengthscale S, = v/u,, 
an unsteadiness lengthscale 6, = u*/w and a geometric lengthscale R. Dimensional 
analysis yields the following result for the ensemble-averaged velocity profiles 
a(y, wt)  and moments of turbulent velocity fluctuations ( U ’ ~ V ’ ~ W ’ ~ )  : 

The relative magnitudes of the three lengthscales S,, 8, and R determines the 
structure of the flow. I n  what follows we assume that Re, = u* Rlv % 1 so that R % 
8,. Then, depending on the magnitude of S,, four different cases may be conceived. 

Case I :  S, % R $ 8 ,  

This case represents what might be called ‘ quasi-steady ’ turbulent behaviour. In  
this case, the influence of the lengthscale 6, (representing effects of flow oscillation) 
i s  negligible for y in the range 0 < y < R ; i.e. throughout the cross-section of the pipe. 
The structure of the flow at each phase is determined by the two scales R and S,, 
similar to ‘steady’ turbulent wall flows. 

The detailed structure of the flow can be determined by the usual classical 
arguments, which utilize the fact that in the vicinity of the wall ( y  -4 R )  the influence 
of the lengthscale R should also be negligible, so that 

(u,lwR $ 1, RuJv 9 1) 

ti aa +a@, 
u* u*aY aY+ 
_ -  -@, (”:*) - = @ (  1 Y+)? -- = y  - 9  

Since vaa/ay(,_, = u:, it is clear that  to leading order @(y+) z y f  for y+ -4 1.  

of the lengthscale S, and 
In contrast, away from the wall ( y  $ S,), the fluid motion should be independent 

where ao(wt) is the ensemble-averaged centreline velocity. 
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In  the overlap region 6, 4 y 4 R, both sets of equations ( 5 ) ,  (6) and (7),  (8) should 
be simultaneously valid. It follows that, in this region, 

$iik(y+) = $i:h(Y) = const. = aklm,  

leading (i) to a region of constant stress, and (ii) to a logarithmic form for both 
functions Gl(y+) and @,(Y) in the overlap region: 

Thus in the regime for which u,/Ho 9 1 and u* R l v  >> 1 the universal log law applies 
and the flow behaves in a quasi-steady manner. 

Case I I :  St - R % 6, 

Since 13, is of the same order of magnitude as R, neither could affect the flow in the 
vicinity of the wall (y -g R )  and the usual law of the wall represented by (5) ,  (6) is 
valid in this region. However, away from the wall (y 9 6,) the fluid motion is 
influenced by both scales R and a,, 

(u,lwR - 1, R u J v  &. 1) 

from which 

and 

In the overlap region S, Q y 4 R, both sets of equations (5 ) ,  (6) and ( l l ) ,  (12) 
should be valid and 

a@ a@, a@ 
ay+ ayt ay 

y+ 2 = yt -+ Y 2  = const. = A ,  

(y+) = $i:h ( yt,  Y )  = cons t.  = aklm. 

This leads to the modified logarithmic law 

where the coefficient B, (and hence B )  now depends on the parameter u,/Ro. Since 
u* is a function of wt, the velocity profiles in this regime obey a logarithmic law with 
the same slope as the universal low law but with an intercept that  varies with wt. The 
experimental data reported in figure 8 ( b )  belong to this regime. For the flow shown 
in figure 8 ( b ) ,  the value of u,/Ro during the deceleration phase ranged from 2.8 at 
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wt = $z to 1.0 at wt = 14x115, with RuJv varying between 630 and 240 for the same 
period. Accordingly, during this period, the experimental velocity profiles can be 
described by @/u* = y+ for y+ < 10 and by @/u* = A In y++B(wt) for 30 < y+ < 200. 
The slope A in the semi-logarithmic distribution of velocity has a value of 2.5 which 
corresponds to a von KBrmBn constant of K = 0.4. The value of B, however, is a 
function of the phase in the cycle and varies between 2.5 and 4.5 (compared to 
B = 5.5 for steady pipe flows). 

Case III:  R 9 6 , 9  6, 

Once again, near the wall (y 4 6,) the only scale affecting the flow is S, and the 
usual law of the wall (5), (6), is valid in this region. Moreover, the scales 6, and R are 
unimportant for 6, @ y @ R, 

R.  Akhavan, R .  D .  Kamm and A .  H .  Shapiro 

(u,/wR @ 1 ,  u:/wu 9 1 )  

I n  the overlap region 6, @ y 4 6, both sets of equations ( 5 ) ,  (6) and (15), (16) should 
be simultaneously valid. Therefore, in this region, 

a@ Y + a y +  = YtK - - const. = A ,  

leading to the usual region of constant moments and logarithmic velocity profiles 
within this layer. 

In  the outer region (y 9 6,) neither of the scales 6, or 6, can affect the flow. 
However, the usual velocity defect law (7) is not valid in this region. This is because 
passage to the limit y/6, + co (i.e. 6, = u * / w  + 0) is equivalent to flow conditions 
where u* + O  but where w remains finite. Therefore, in the region y 9 S, the 
parameters R and w (but not u or u*)  should be relevant. This leads to 

( U ’ ~ V ’ ~ W ’ ~ )  = ( R U ) ~ + ~ + ~  $i:k (i), 
indicating that in oscillatory flows where uJRw @ 1 and u:/wu 9 1, the fluid 
behaves in an inviscid manner in the outer region and turbulent moments remain 
frozen during the cycle in this outer region. 

Our experiments did not extend to such high frequencies that the conditions 
u*/Rw @ 1, u2,/w 9 1 could be satisfied for a significant portion of the deceleration 
phase in any of our runs. However, Mizushima et al. (1975) and Ramaprian & Tu 
(1983) have both reported measurements for turbulent oscillatory flow about a non- 
zero flow with uJRw x 0.1, u:/wv x 100 and the features reported by them are 
consistent with the predictions of the similarity analysis described above. 
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Case IV:  R + 8, - 8, (u,/wR G 1, u:/wv - 1) 

Here the effect of oscillation is confined to the near-wall region (y < R), as 
evidenced by the fact that 8, cannot affect the flow away from the wall. In the near- 
wall region 

(19) 
aa a@l 

- y  -+yt- ,  
u*ay ay+ ayt 

= q ( y + , y t ) ,  -- - Q 

Whereas in the core (y B a,), the usual velocity defect law (7),  (8) holds. The overlap 
region between (7),  (8) and (19), (20) leads to the modified logarithmic law 

with the same slope as the universal log law, but with an intercept that may vary 
with ot. No experimental data are presently available for flow in this regime. 

In connection with the four flow regimes described above, we should also mention 
a similar classification of turbulent oscillatory flows (in terms of the parameter 
u,/Rw) that has been suggested by Ramaprian & Tu (1983). The similarity 
arguments outlined above, in general, predict many of the features that were 
described by Ramaprian & Tu (1983) for flow in each regime, and furthermore 
demonstrate the significance of the additional parameter uZ,/wv in determining the 
structure of the flow. 

3.2.4. Turbulence intensities 
The turbulence intensities ((u’2); and (v’2);) and the turbulent shear stress (m) are 

(25) 
- l N  
u’w’ = -2 u~(r,wt+211(j-11))w;(r,wt+211(j-  i ) ) ,  

where u‘ and v’ are the differences between the instantaneous and the ensemble- 
averaged velocities, 

u’(r, wt) = U ( T ,  ot)-t i(r,  wt) ,  

N,-1 

(26) 

(27) w’(r, ot) = w(r, wt) -v(r, wt) .  

The phase variation of axial and radial turbulence intensities ((z);, (3);) at various 
radial positions across the pipe are shown in figure 9. During the early part of the 
acceleration phase, turbulence intensities remain at  a low level in both the radial and 
axial directions. During this period, both quantities have a fairly uniform 
distribution across the pipe cross-section and no significant variation in the level of 
disturbances can be detected as a function of the phase in the cycle. In absolute 
magnitude, however, axial turbulence intensities are always roughly twice as large as 
radial intensities (see also figure 11). 
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FIGURE 10. Phase variation of overall kinetic energy of disturbances, normalized to  that of the 
mean flow. (Red = 1080, A = 10.6.) 

Shortly before the start of the deceleration phase, at a time wt - 5x112, turbulence 
intensities in both the radial and axial directions rapidly increase over a very short 
(convective) timescale. For the axial component, the increase occurs most 
prominently in the near-wall region ; whereas for the radial component, the increase 
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FIQURE 11 .  Distributions of axial (-o-) and radial (-0-) turbulence intensities across the 
pipe cross-section. (Re' = 1080, A = 10.6.) 

is more uniform throughout the cross-section of the pipe. The comparison between 
the timescale of appearance of turbulence and the timescale of variation of the flow 
is best seen in figure 10, where the overall kinetic energy of the fluctuations 
integrated over the cross-section of the pipe (and normalized to that of the mean 
flow) is plotted as a function of the phase in the cycle. The short (explosive) timescale 
for the appearance of turbulence towards the end of the acceleration phase indicates 
that  turbulence is generated by a snap-through transition mechanism. From figure 
10 it can also be seen that during the early part of the acceleration phase the 
disturbances retain a finite energy, even though production of turbulence has 
dropped to very low levels (figure 18). These features are in agreement with the flow 
visualization studies of Hayashi & Ohashi (1981), where i t  was observed that with 
the start of the acceleration phase a large-scale structure of eddies would form which 
was convected by the mean flow with little distortion. 

The distributions of axial and radial turbulence intensities ((p);, (v'2)$)), as well as 
the - ratio of the turbulence intensities to the ensemble-averaged centreline velocity 
( ( ~ ' ~ ) i / t i ~ ,  (v'2)i/tio), are plotted in figures 11 and 12 for various phases during the 
cycle. Comparison with earlier measurements of these quantities in steady pipe flows 
(Laufer 1954) shows that the structure and distribution of turbulence intensities for 
the present case is essentially identical to that for steady wall-bounded flows. 
Turbulence is nearly isotropic near the centre of the pipe, while in the wall region 
axial turbulence intensitieb are 2.5 to 3 times the radial intensities, similar to steady 
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FIGURE 12. Distributions of axial (-o-) and radial (-.-) turbulence intensities normalized to 
ensemble-averaged centreline velocities, across the pipe cross-section. (Re' = 1080, A = 10.6.) 

turbulent pipe flows. The major difference from steady flow results is in the ratio of 
turbulence intensities to the ensemble-averaged centreline velocity (figure 12). In the 
present experiments, this ratio for both axial and radial turbulence intensities was 
twice as large as that reported for steady pipe flows (Laufer 1954). This indicates 
that, for oscillating flows, turbulence is generated more vigorously than for steady 
flows with zero pressure gradient. 

Figures 11 and 12 do not provide a detailed description of the distribution of 
turbulence intensities in the near-wall region. To see these regions in more detail, the 
ratios (u'")i/u* and (v'")i/u* are plotted vs. the wall coordinate yf, for y+ < 200 in 
figure 13. As seen in this figure, (u'"); reaches a peak value of x 47.4, near y+ x 10. This 
should be compared to the peak ratio (u'")'/u* x 2.5 at y+ x 15 for steady wall- 
bounded flows. 

3.2.5. Turbulent shear stresses 

for various radial locations 
is shown in figure 14. During the early part of the acceleration phase of the cycle, 
- turbulent shear stresses (and hence the rates of turbulence energy production, 
u'v'aa/ar) are negligibly small throughout the pipe. However, towards the end of the 
acceleration phase there is a rapid buildup of turbulent shear stresses in the near-wall 
region of the pipe. 

Distributions of absolute and normalized turbulent shear stresses (u" and 

The phase variation of the turbulence shear stress 
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FIGURE 15. Distribution of turbulent shear stress across the pipe cross-section for various 
phases. (Re8 = 1080, A = 10.6.) 

- 

u'u'/ui) across the pipe cross-section are shown in figures 15 and 16 for selected 
phases during the cycle. The turbulent shear stress at a location r is given by 

Substituting for - l/p(C@/az) from ( 2 ) ,  results in 

Away from the wall vat~lar  is negligible and the above equation reduces to 

In the core, where ti is nearly uniform, this reduces to 

In contrast, for the region near the wall such that y/R -4 1, but still outside of the 
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FIGURE 16. Distribution of turbulent shear stress, normalized to wall-friction velocity, 
the pipe cross-section for various phases. (Red = 1080, A = 10.6.) 

across 

viscous sublayer so that the viscous stresses are still negligible (i.e. for 8, 4 y / R  4 l) ,  
(28) reduces to 

indicating that a l aEr  of constant Reynolds stress exists near the wall. 
The two layers (u'v'/u: x r / R  in the core, and m/u: x 1 near the wall) can be 

distinctly seen in the plots of figure 16 for most of the deceleration phase of the cycle. 
In figure 16, a / u $  bkcomes negative for wt = x .  This simply is a reflection of the 

reversal of flow in the near-wall region at  this phase (in our notation, 7,/p = u: takes 
on negative values for it: < wt < 2 ~ ) .  It does not imply production of negative stresses 
(see figure 15). 

3.2.6. Turbulence energy production 
Profiles of the rates of turbulence energy production, -pU"&/ay,  are displayed 

in figure 17 for a turbulent flow at  Res = 1080, A = 10.6. Production of turbulence is 
most significant during the late stages of the acceleration phase and early stages of 
the deceleration phase and has its peak value at  y+ x 10, similar to steady wall- 
bounded turbulent flows (Laufer 1954). 

The overall rate of turbulence energy production, integrated over the pipe cross- 
section, is shown in figure 18. Significant production of turbulence occurs only during 
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FIQURE 21. Distribution of turbulent shear stress, normalized to wall-friction velocity, across 
the pipe cross-section for various phases. (Re' = 1720, A = 10.6.) 
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FIQURE 21. Distribution of turbulent shear stress, normalized to wall-friction velocity, across 
the pipe cross-section for various phases. (Re' = 1720, A = 10.6.) 

FIGURE 22. Phase variation of overall kinetic energy of disturbances, normalized to that of 
the mean flow. (Re' = 1720, A = 10.6.) 
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FIQURE 25. Distribution of turbulent shear stress normalized to wall-friction velocity, across 
the pipe cross-section for various phases. (Red = 957, A = 5.7.) 

FIQURE 26. Phase variation of overall kinetic energy of disturbances, normalized with that of 
the mean flow. (Red = 957, A = 5.7.) 
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the late stages of the acceleration phase and the early stages of the deceleration phase 
of the cycle. During the early stages of the acceleration phase, production of 
turbulence essentially stops. 

3.3. Effect of Res and A 
The features described in the previous sections were common to all the cases studied, 
which were all such that u J R w  - 1 and R u J v  % 1 during the turbulent portion of 
the cycle; hence the description provided under case I1 applied to all flows. 
Representative plots of profiles of axial velocities, turbulence intensities, turbulent 
Reynolds stresses and overall kinetic energy of disturbances are shown in figures 
19-22 for a flow at Res = 1720, A = 10.6. The major difference between this flow and 
the case Res = 1080, A = 10.6 discussed earlier, is that for flow at this higher 
Reynolds number turbulence sets in at an earlier stage during the cycle. The flow is 
turbulent for in < wt < R and for $R < wt < 2n, corresponding to the latter half of the 
acceleration phase and all of the deceleration phase (figure 22). During the turbulent 
portion of the cycle, the velocity profiles could be described by u+ = y+ for y+ < 10 
and ut = A In y+ +B(wt) for 30 < y+ < 200, with A = 2.5 and B varying between 5.94 
and 4.15 (figure 19). As before, during the early part of the acceleration phase, 
production of turbulence stops and the flow reverts to laminar. For the turbulent 
portion of the cycle, production of turbulence is most significant around yt x 10 
similar to the case discussed before and to steady wall-bounded turbulent flows. The 
overall kinetic energy of disturbances, integrated over the cross-section of the pipe 
and normalized with respect to that of the mean flow, is plotted in figure 22. 
Comparison with figure 10 shows that the disturbances seem to saturate at a peak 
energy of roughly 4 to 6% of the kinetic energy of the mean flow. 

Similar results were also obtained for a flow at Res = 957, A = 5.7. These results 
are shown in figures 23-26. Compared to the case Res = 1080, A = 10.6, absolute 
rates of production of turbulence were significantly lower in this case. This is due to 
the lower value of o which results in less severe adverse pressure gradients during the 
deceleration phase of the cycle. As a result, absolute magnitudes of wall-shear 
velocities were lower, and the inner scales extended further into the croas-section of 
the pipe. Once appropriately non-dimensionalized, however, the 'results agreed with 
the two cases discussed earlier. 

4. Conclusions 
The structure of oscillatory turbulent flow in a pipe has been studied by laser- 

Doppler velocimetry. In all flows studied, turbulence appeared explosively towards 
the end of the acceleration phase of the cycle and was sustained throughout the 
deceleration phase. During the early part of the acceleration phase, production of 
turbulence decreased to very low levels and the profiles agreed with laminar theory. 
Nevertheless, during this period the disturbances retained a small but finite energy. 
During the turbulent portion of the cycle, production of turbulence was restricted to 
the wall region of the pipe and was the result of turbulent bursts. The statistics of 
the resulting turbulent flow showed a great deal of similarity to results for steady 
wall- bounded turbulent shear flows, provided quantities were non-dimensionalized 
with respect to the corresponding ensemble-averaged wall-friction velocities. The 
two non-dimensional groups u J R w  and u i / w v  have been identified as critical 
parameters in determining the structure of the flow, and have been used to classify 
oscillatory turbulent flows. The major features observed in these experiments are 
used as a guideline in Part 2 of this paper (Akhavan et al. 1991) to identify the nature 



422 R .  Akhavan, R.  D .  Kamm and A .  H .  Shapiro 

of the instability that is most likely to be responsible for transition in these class of 
flows. 
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